Pre-class Warm-up!!!

Which of the following functions has a frequency of 440 cycles per second?
a. $\sin 440 t$
b. $\sin 2 \pi \cdot 440 t$
c. $\sin (1 / 440 t)$
d. $\sin (1 /(2 \pi \bullet 440 t))$
e. $\sin 2 \pi / 440 t$
f. None of the above
\rightarrow Office hours body are cancelled

- On Monday 1 will reach, then have office hours, on Zoom The link is in an "Armouncement" on the Canvas site, also on my home page, and also in an email you should all have got.
\rightarrow I will record Monday's class.

Section 5.6: Forced oscillations and resonance.

We have studied systems

- that oscillate (mass on the end of a spring): $m x^{\prime \prime}+k x=0 \quad$ simple harmonic mofich.
- with damping: $\mathrm{mx}^{\prime \prime}+\mathrm{cx}^{\prime}+\mathrm{kx}=0$ With under damping $x(t)=e^{-\lambda t} \cos \left(\omega_{0} t-\alpha\right)$ We now allow an external force to be applied: $m x^{\prime \prime}+c x^{\prime}+k x=F(t)$
and we take $F(t)$ to have the form

$$
F(t)=A \cos \omega t+B \sin \omega T
$$

As already done: $x(t)=x _c+x _p$
$x_{-} c=$ transient solution" $=$ solution to homogeneous equation
$x_{p}=$ "steady state solution"

New vocabulary:

- resonance, beats,
- Steady periodic solution, transient solution

We do not study:

- the particular models (cart with a flywheel)
- Static displacement, amplification factor
- Conservation of energy
- Practical resonance, critical resonance frequency (questions 15-18)
- adjusted forcing function (questions 7-10)

Section 5.6, question 2:
Express the solution of the initial value problem as a sum of two oscillations. Graph it.

$$
x^{\prime \prime}+4 x=5 \sin 3 t, \quad x(0)=x^{\prime}(0)=0
$$

Solution: Char poly $r^{2}+4=(r+2 i)(r-2 i)$

$$
\begin{aligned}
& x_{c}=c_{1} \cos 2 t+c_{2} \sin 2 t \\
& \operatorname{Try} x_{p}=A \sin 3 t+B \cos 3 t \\
& x_{p}^{\prime}=\cdots \\
& x_{p}^{\prime \prime}=
\end{aligned}
$$

Substitute, find A, B.
The solution' is $x_{c}+x_{p}$
Apply the initial conditions to get c_{1}, c_{2}

Express $x_{c}=\cos \left(\omega_{0} t-\alpha\right)$

Section 5.6, question 2:
Express the solution of the initial value problem as a sum of two oscillations. Graph it.

$$
x^{\prime \prime}+4 x=5 \sin 3 t, \quad x(0)=x^{\prime}(0)=0
$$

Solution: Char. egn. $r^{2}+4=0, r= \pm 2 i$

$$
x_{c}=c_{1} \cos 2 t+c_{2} \sin 2 t
$$

To get x_{p}, try $x_{p}=A \cos 3 t+B \sin 3 t$

$$
x_{p}^{\prime}=-3 A \sin t+3 B \cos 3 t, x_{p}^{\prime \prime}=-9 A \cos 3 t-9 B \sin 3 t
$$

$$
x_{p}^{\prime \prime}+4 x_{p}=(4 A-9 A) \cos 3 t+(4 B-9 B) \operatorname{sm} 3 t
$$

$$
=5 \sin 3 t \text { so } A=0,-5 B=5, B=-1
$$

$$
x_{p}=-\sin 3 t
$$

General solution $x=c_{1} \cos 2 t+c_{2} \sin 2 t-\sin 3 t$

$$
\begin{aligned}
& x(0)=c_{1}=0 \\
& x^{\prime}=-2 c_{1} \sin 2 t+2 c_{2} \cos 2 t-3 \cos 3 t \\
& x^{\prime}(0)=0=2 c_{2}-3, \quad c_{2}=3 / 2
\end{aligned}
$$

$$
x=\frac{3}{2} \sin 2 t-\sin 3 t=\frac{3}{2} \cos \left(2 t-\frac{\pi}{2}\right)-\cos \left(3 t-\frac{\pi}{2}\right)
$$

Question: what are the periods of these functions?
a. $\pi / 2, \pi / 3$
b. $1 / 2,1 / 3$
c. $2 \pi, 3 \pi$
d. $\pi, 2 \pi / 3$
e. None of the above.

Resonance
Section 5.6, question 2 is:

$$
x^{\prime \prime}+4 x=5 \sin 3 t, \quad x(0)=x^{\prime}(0)=0
$$

$\sin 2 t, \cos 2 t$ are stations to $x^{\prime \prime}+4 x=0$
Modification:

$$
x^{\prime \prime}+4 x=4 \sin 2 t, \quad x(0)=x^{\prime}(0)=0
$$

Question:
What is the best form of function to try so as to give a particular solution to $x^{\prime \prime}+4 x=4 \sin 2 t$?
a. $y=A \sin 2 t$
b. $y=A \sin 2 t+B \cos 2 t$
c. $y=A \sin 2 t+B \cos 2 t+C t \sin 2 t+D t \cos 2 t$
d. Something else.

1 prefer $C t \sin 2 t+D t \cos 2 t$

Proceed as before: find x_{p} etc.

Resonance
Modification of question 2 :

$$
x^{\prime \prime}+4 x=4 \sin 2 t, \quad x(0)=x^{\prime}(0)=0
$$

Solution:
Again $x_{c}=a \cos 2 t+b \sin 2 t$
For a particular solution we Ny $x_{p}=A t \cos 2 t+B t \sin 2 t$ $x_{p}^{\prime}=4$ terms
$x_{p}^{\prime \prime}=6$ terms
$x_{p}^{\prime \prime}+4 x_{p}=-4 A \sin 2 t+4 B \cos 2 t=4 \sin 2 t$
$A=-1, B=0, x_{p}=-t \cos 2 \tau$
$x=c_{1} \cos 2 t+c_{2} \sin 2 t-t \cos 2 t$
Initial conditions i $x(0)=c_{1}=0$

$$
x^{\prime}=-2 c_{1} \sin 2 t+2 c_{2} \cos 2 t-\cos 2 t+2 t \sin 2 t
$$

$$
\begin{aligned}
& x^{2}(0)=2 c_{2}-1=0, c_{2}=\frac{1}{2} \\
& x=\frac{1}{2} \sin 2 t-t \cos 2 t
\end{aligned}
$$

The solution mcreases without bound We have resonance. $F(t)$ hat the some frequency as a solution to the homog-egh.

Beats occur when we have two solutions $\cos (\omega, t), \cos (\omega t)$ where ω, ω_{0} are close
Write

$$
\begin{aligned}
x(t) & =\cos \left(\omega_{0} t\right)+\cos (\omega t) \\
& =\frac{1}{2} \cos \left(\frac{\omega_{0} t+\omega t}{2}\right) \cos \left(\frac{\omega_{0} t-\omega t}{2}\right)
\end{aligned}
$$

This comes from

$$
\cos (A+B)=\cos A \cos B-\sin A \sin B
$$

$\cos (A-B)=\cos A \cos B+\sin A \sin B$

$$
\cos (A+B)^{\prime}+\cos (A-B)=2 \cos A \cos B
$$

Example

$$
\cos 2 t+\cos 3 t=\frac{1}{2} \cos \frac{5 t}{2} \cos \frac{t}{2}
$$

Take $A=\frac{\omega_{0} t+\omega t}{2} B=\frac{\omega_{0} t-\omega t}{2}$ to get the prenous formula.
5.6 question 12 :

Find the steady periodic solution

$$
x_{s p}=C \cos (\omega t-\alpha)
$$

and the actual solution $x(t)=x _s p(t)+x _t r(t)$ of $x^{\prime \prime}+6 x^{\prime}+13 x=10 \sin 5 t, \quad x(0)=x^{\prime}(0)=0$

Solution $x_{t r}=x_{c}$ is a solution of

$$
x^{\prime \prime}+6 x^{\prime}+13 x=0
$$

Char. eqn $r^{2}+6 r+13=0, r=\frac{-6 \pm \sqrt{36-52}}{2}=-3 \pm 2 i$

$$
x_{t r}=e^{-3 t}\left(c_{1} \cos 2 t+c_{2} \sin 2 t\right)
$$

For $x_{p}=x_{s p}$ try $x=A \sin 5 t+B \cos 5 t$

$$
\begin{aligned}
& x^{\prime}= \\
& x^{\prime \prime}=
\end{aligned}
$$

$$
\begin{aligned}
A & =\frac{-120}{1044}=\frac{-30}{261} \quad B=\frac{-300}{1044}=\frac{-75}{261} \\
x_{s p} & =\frac{-1}{261}(30 \sin 5 t+75 \cos 5 t) \\
& =\frac{-\sqrt{30^{2}+75^{2}}}{261}(\sin \alpha \sin 5 t+\cos \alpha \cos 5 t) \\
& =-\frac{10}{6 \sqrt{29}} \cos (5 t-\alpha) \quad \tan \alpha=\frac{2}{5} \\
S_{0} x & =e^{-3 t}\left(c_{1} \cos 2 t+c_{2} \sin 2 t\right)-\frac{10}{6 \sqrt{29}} \cos (5 t-\alpha) \\
\cos (-\alpha) & =\frac{5}{\sqrt{29}} \\
x(0) & =c_{1}-\frac{5}{3 \sqrt{29}} \cdot \frac{5}{\sqrt{29}}=0, c_{1}=\frac{25}{3.29} \\
c_{2} & =\cdots \quad \operatorname{lan} \beta=\frac{5}{2} . \\
x_{t r} & =\frac{25}{6 \sqrt{29}} e^{-3 t} \cos (2 t-\beta) \quad \tan
\end{aligned}
$$

